- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Lubin, Justin (4)
-
Chugh, Ravi (3)
-
Hempel, Brian (2)
-
Chasins, Sarah_E (1)
-
Collins, Nick (1)
-
Ferguson, Jeremy (1)
-
Lu, Grace (1)
-
Omar, Cyrus (1)
-
Ye, Kevin (1)
-
Yim, Jacob (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present an enumerative program synthesis framework calledcomponent-based refactoringthat can refactor “direct” style code that does not use library components into equivalent “combinator” style code that does use library components. This framework introduces a sound but incomplete technique to check the equivalence of direct code and combinator code calledequivalence by canonicalizationthat does not rely on input-output examples or logical specifications. Moreover, our approach can repurpose existing compiler optimizations, leveraging decades of research from the programming languages community. We instantiated our new synthesis framework in two contexts: (i) higher-order functional combinators such asmapandfilterin the staticallytyped functional programming language Elm and (ii) high-performance numerical computing combinators provided by the NumPy library for Python. We implemented both instantiations in a tool calledCobblerand evaluated it on thousands of real programs to test the performance of the component-based refactoring framework in terms of execution time and output quality. Our work offers evidence that synthesis-backed refactoring can apply across a range of domains without specification beyond the input program.more » « less
-
Lubin, Justin; Collins, Nick; Omar, Cyrus; Chugh, Ravi (, Proceedings of the ACM on Programming Languages)
-
Hempel, Brian; Lubin, Justin; Chugh, Ravi (, Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST))
-
Hempel, Brian; Lubin, Justin; Lu, Grace; Chugh, Ravi (, Proceedings of the 40th International Conference on Software Engineering)
An official website of the United States government
